
1

UNIT-5 ASSEMBLY LANGUAGE PROGRAMMING

INTRODUCTION TO MICROPROCESSOR 8085:

The 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel

in 1977 using NMOS (N-channel metal-oxide semiconductor) technology.

It has the following configuration −

 8-bit data bus and 16-bit address bus, which can address upto 64KB

 A 16-bit program counter and 16-bit stack pointer

 Six 8-bit registers arranged in pairs: BC, DE, HL

 Requires +5V supply to operate at 3.2 MHZ single phase clock

Here are some key features of the 8085 microprocessor:

1. 8-Bit Architecture: The 8085 is an 8-bit microprocessor, which means it processes data in 8-bit chunks,

making it suitable for handling relatively small data sizes.

2. 16-Bit Address Bus: The 8085 has a 16-bit address bus, allowing it to address up to 64 KB (64 * 1024

bytes) of memory. This provides a significant addressable memory range for its time.

3. Internal Registers: The 8085 includes several internal registers:

 Accumulator (A)

 General-purpose registers (B, C, D, E, H, L)

 Temporary register (WZ)

 Special-purpose registers (Program Counter: PC, Stack Pointer: SP, Flag Register: FLAGS)

4. Clock Speed: The 8085 typically operates at clock speeds ranging from 2 to 3 MHz. This clock speed

determines the execution rate of instructions.

5. Instruction Set: The 8085 has a compact instruction set with a total of 74 instructions. These

instructions cover a wide range of data manipulation, logical, arithmetic, and control operations.

6. Addressing Modes: The 8085 supports various addressing modes, including immediate, direct, indirect,

and register addressing. These modes provide flexibility in accessing memory and operands.

7. Interrupts: The 8085 supports five interrupt lines to handle external events and interrupt-driven

operations. Interrupts enable the microprocessor to respond to time-critical tasks and events.

8. Flag Register: The 8085 has a flag register (FLAGS) that contains important status flags such as carry

(CY), zero (Z), sign (S), parity (P), and auxiliary carry (AC). These flags are used to indicate the results

of arithmetic and logic operations.

9. Serial I/O: The 8085 has serial input/output lines (SID and SOD), which enable serial communication

with external devices.

10. Power Supply: The 8085 typically operates on a +5V power supply.

11. Pin Configuration: The standard 8085 microprocessor package has 40 pins, each serving specific

functions, including data bus, address bus, control signals, clock input, and power supply connections.

12. Backward Compatibility: The 8085 is designed to be backward compatible with the earlier 8080

microprocessor, easing the transition for systems using the 8080.

2

BUS STRUCTURE OF 8085 MICROPROCESSOR:

The bus organization of 8085 microprocessor is the way in which the microprocessor communicates with

other devices in a computer system. The 8085 microprocessor has a 16-bit address bus, an 8-bit data bus, and

various control signals that are used to manage data transfer and other operations.

1. Address Bus:

The Address Bus is used to specify the memory location or device with which the microprocessor wants

to communicate. It is 16 bits wide, which allows the microprocessor to address up to 64K bytes of

memory. The address bus is unidirectional, which means that data can only flow in one direction from

the microprocessor to the addressed device.

 Unidirectional: The Address Bus is a unidirectional bus, meaning it carries information only in one

direction, from the microprocessor to the external memory or I/O devices.

 Size: The 8085 has a 16-bit Address Bus, consisting of 16 address lines. These address lines allow

the microprocessor to address a maximum of 64KB (216 = 65536) of memory locations.

 Function: The microprocessor uses the Address Bus to specify the memory location or I/O device

with which it wants to read data from or write data to. The addresses on the Address Bus determine

the specific location in the memory map that the microprocessor is currently accessing.

2. Data Bus:

The Data Bus is used to transfer data between the microprocessor and other devices. It is 8 bits wide,

which means that data can be transferred in bite-sized chunks. The data bus is bidirectional, which means

that data can flow in either direction between the microprocessor and other devices.

 Bidirectional: The Data Bus is a bidirectional bus, meaning it carries data in both directions, between

the microprocessor and the external memory or I/O devices.

 Size: The 8085 has an 8-bit Data Bus, consisting of 8 data lines. This means that the microprocessor

can transfer 8 bits (1 byte) of data at a time between itself and the memory or I/O devices.

 Function: The Data Bus is used to transfer actual data between the microprocessor and the memory

or I/O devices. During read operations, data from the memory or I/O device is placed on the Data

Bus for the microprocessor to read. During write operations, the microprocessor places data on the

Data Bus to be written to the specified memory location or I/O device.

3

3. Control Bus:

The Control Bus has various control signals that are used to manage data transfer and other operations.

These control signals include the read (RD), write (WR), and hold (HLDA) signals. The RD and WR

signals are used to control data transfer to and from memory or other devices, while the HLDA signal is

used to indicate that microprocessor is in a hold state and cannot execute instructions.

 Bidirectional: While some lines of the Control Bus are used to send control signals from the

microprocessor to external devices, there are also lines for status signals from external devices back

to the microprocessor.

 Function: The Control Bus carries various control and status signals that coordinate the operations

of the microprocessor and the external devices. These signals include:

 Read and Write Control Signals: Indicate whether the current operation is a read (data is being

fetched) or write (data is being stored) operation.

 Interrupt Request and Acknowledge Signals: Used for interrupt handling, where external devices

can interrupt the microprocessor to handle specific events.

 Clock Signals: Control the timing of the microprocessor's operations.

 Reset Signals: Used to reset the microprocessor and start execution from a known location.

 Control Signals for Specific Operations: Signals that indicate the current operation being

performed by the microprocessor, such as memory or I/O operations.

Advantages:

1. Flexibility: The bus organization used in the 8085 microprocessor allows it to communicate with a wide

range of devices. This flexibility makes it well-suited for use in a variety of computer systems, including

embedded systems, personal computers, and other devices.

2. Modularity: The bus organization makes it easy to add or remove devices from a computer system. This

modularity allows system designers to customize the system to meet the needs of specific applications.

3. Scalability: The bus organization used in the 8085 microprocessor is scalable, which means that it can

be used in systems of varying sizes and complexity. This scalability makes it well-suited for use in systems

that require a wide range of performance levels.

4. Low Cost: The bus organization used in the 8085 microprocessor is relatively simple and inexpensive to

implement. This makes it an attractive option for low-cost, embedded applications.

Disadvantages:

1. Limited Bandwidth: The bus organization used in the 8085 microprocessor has a limited bandwidth,

which can limit the performance of the processor in high-performance applications.

2. Latency: The bus organization can introduce latency, which is the delay between the time a command is

issued and the time the response is received. This latency can be a problem in real-time applications that

require immediate responses.

3. Data Integrity: The bus organization used in the 8085 microprocessor is vulnerable to data corruption

due to electromagnetic interference and other sources of noise. This can lead to errors in data transmission

and processing.

4. Complexity: The bus organization used in the 8085 microprocessor can be complex to implement and

troubleshoot, which can increase the cost and time required to develop and maintain computer systems.

4

Uses of Bus Organization in 8085 Microprocessor:

1. Memory access: The bus organization is used for accessing memory by transferring the address of the

memory location through the address bus and the data to be stored or retrieved through the data bus. This

enables the microprocessor to read and write data to and from memory, which is essential for executing

instructions and storing data.

2. I/O operations: The bus organization is used for performing input/output (I/O) operations by transferring

the input/output device address through the address bus and the data to be input or output through the data

bus. This enables the microprocessor to communicate with peripheral devices such as keyboards, displays,

and sensors.

3. Interrupt handling: The bus organization is used for interrupt handling, where the microprocessor uses

the address bus to fetch the interrupt vector and the data bus to fetch the interrupt service routine. This

enables the microprocessor to respond to external events and perform time-critical operations.

4. DMA operations: The bus organization is used for performing Direct Memory Access (DMA)

operations, where the data transfer between the memory and I/O devices takes place without the

intervention of the microprocessor. This enables high-speed data transfer between devices and reduces

the load on the microprocessor.

5. Control signal transfer: The bus organization is used for transferring control signals between the

microprocessor and other components of the system. This enables the microprocessor to control the

operation of devices and coordinate the execution of instructions.

Issues of Bus organization in 8085 microprocessor:

1. Limited data transfer rate: The 8085 microprocessor has an 8-bit data bus, which means that it can

transfer only 8 bits of data at a time. This limited data transfer rate can be a bottleneck in systems that

require faster data transfer.

2. Limited address range: It has a 16-bit address bus, which limits the addressable memory to 64 KB. This

can be a limitation in systems that require larger memory addressing.

3. Bus contention: Bus contention occurs when two or more devices try to use the bus at the same time.

This can cause data corruption and other errors in the system.

4. Timing issues: The bus organization requires precise timing for the signals to be transmitted correctly.

Any timing errors can cause data corruption or other errors in the system.

5. Limited number of devices: The bus organization of the 8085 microprocessor can support a limited

number of devices due to its limited bus width and address range. This can be a limitation in systems that

require more devices to be connected.

6. Noise interference: The signals on the bus can be affected by noise interference, which can cause errors

in the system.

7. Power consumption: The bus organization can consume significant power, especially when many

devices are connected to the bus. This can be a limitation in portable or low-power systems.

5

INSTRUCTION SETS OF 8085:

1. Data Transfer Instruction

2. Arithmetic Instruction

3. Logical Instruction

4. Control Transfer Instruction

5. Stack and I/O Instruction

DATA TRANSFER INSTRUCTIONS:

 MOV: Move data from source to destination.

 MVI: Move immediate data to a register or memory location.

 LDA: Load the accumulator with data from a memory address.

 STA: Store the contents of the accumulator into a memory address.

 LHLD: Load the HL register pair with data from a memory address.

 SHLD: Store the contents of the HL register pair into a memory address.

 LDAX: Load accumulator with data from a memory location pointed to by BC or DE.

 STAX: Store contents of accumulator into a memory location pointed to by BC or DE.

Mnemonic Opcode Description

MOV Rd, Rs 8x Move data from source (Rs) to destination (Rd)

MVI Rd, data 3E Move immediate data to destination (Rd)

LDA address 3A Load accumulator with data from memory address

STA address 32 Store accumulator content into memory address

LHLD address 2A Load HL register pair from memory address

SHLD address 22 Store HL register pair into memory address

LDAX Rp 0A (B), 1A (D) Load accumulator from memory location pointed to by BC (B) or DE (D)

STAX Rp 02 (B), 12 (D) Store accumulator into memory location pointed to by BC (B) or DE (D)

In the table:

 "Rd" and "Rs" represent destination and source registers, respectively. The actual register designations

(A, B, C, D, E, H, L) are used.

 "data" represents an immediate data value.

 "address" represents a memory address.

 "Rp" represents the register pairs BC or DE.

6

ARITHMETIC INSTRUCTIONS:

 ADD: Add data to the accumulator.

 ADI: Add immediate data to the accumulator.

 ADC: Add data to the accumulator with carry.

 ACI: Add immediate data to the accumulator with carry.

 SUB: Subtract data from the accumulator.

 SUI: Subtract immediate data from the accumulator.

 SBB: Subtract data from the accumulator with borrow.

 SBI: Subtract immediate data from the accumulator with borrow.

 INR: Increment a register or memory location.

 DCR: Decrement a register or memory location.

Mnemonic Opcode Description

ADD R 80-87 Add the contents of register (R) to the accumulator

ADI data C6 Add immediate data to the accumulator

ADC R 88-8F Add the contents of register (R) and carry flag to the accumulator

ACI data CE Add immediate data and carry flag to the accumulator

SUB R 90-97 Subtract the contents of register (R) from the accumulator

SUI data D6 Subtract immediate data from the accumulator

SBB R 98-9F Subtract the contents of register (R) and borrow (carry) flag from the

accumulator

SBI data DE Subtract immediate data and borrow (carry) flag from the accumulator

INR R 04-3D Increment the specified register (R) by 1

DCR R 05-3D Decrement the specified register (R) by 1

In the table:

 "R" represents the specific registers used in the instructions (A, B, C, D, E, H, L).

 "data" represents an immediate data value.

 The range of opcodes for each instruction indicates that there are multiple versions of these instructions,

one for each possible register (e.g., ADD A, ADD B, ADD C, etc.).

7

LOGICAL INSTRUCTIONS:

 ANA: Perform bitwise AND between data and the accumulator.

 ANI: Perform bitwise AND between immediate data and the accumulator.

 XRA: Perform bitwise XOR between data and the accumulator.

 XRI: Perform bitwise XOR between immediate data and the accumulator.

 ORA: Perform bitwise OR between data and the accumulator.

 ORI: Perform bitwise OR between immediate data and the accumulator.

 CMA: Complement (bitwise NOT) the contents of the accumulator.

 CMP: Compare data with the accumulator.

Mnemonic Opcode Description

ANA R A0-A7 Perform bitwise AND with register (R) and accumulator

ANI data E6 Perform bitwise AND with immediate data and accumulator

XRA R A8-AF Perform bitwise XOR with register (R) and accumulator

XRI data EE Perform bitwise XOR with immediate data and accumulator

ORA R B0-B7 Perform bitwise OR with register (R) and accumulator

ORI data F6 Perform bitwise OR with immediate data and accumulator

CMA 2F Complement (bitwise NOT) the contents of the accumulator

CMP R B8-BF Compare the contents of register (R) with the accumulator

In the table:

 "R" represents the specific registers used in the instructions (A, B, C, D, E, H, L).

 "data" represents an immediate data value.

 The range of opcodes for each instruction indicates that there are multiple versions of these instructions,

one for each possible register (e.g., ANA A, ANA B, ANA C, etc.).

CONTROL TRANSFER INSTRUCTIONS:

 CALL: Call a subroutine at a specified memory address.

 RET: Return from a subroutine.

 JMP: Jump to a specified memory address.

 JNZ/JZ/JNC/JC/JPO/JPE/JP/JM: Conditional jump instructions based on the status of various flags.

 RIM: Read status of the interrupt system and special function registers.

 SIM: Set status of the interrupt system and special function registers.

8

Mnemonic Opcode Description

CALL address CD Call a subroutine at the specified memory address

RET C9 Return from a subroutine

JMP address C3 Unconditional jump to the specified memory address

JNZ address C2 Jump if not zero (Z flag is not set)

JZ address CA Jump if zero (Z flag is set)

JNC address D2 Jump if no carry (carry flag is not set)

JC address DA Jump if carry (carry flag is set)

JPO address E2 Jump if parity odd (P flag is not set)

JPE address EA Jump if parity even (P flag is set)

JP address F2 Jump if positive (S flag is not set)

JM address FA Jump if negative (S flag is set)

RIM 20 Read status of the interrupt system and special function registers

SIM 30 Set status of the interrupt system and special function registers

In the table:

 "address" represents a memory address.

 The opcodes provided are for illustrative purposes and represent the most common cases. The actual

opcodes for these instructions depend on the specific addressing mode or additional flags.

 The mnemonic "CALL" is used for subroutine calls, "RET" is used for subroutine returns, "JMP" is an

unconditional jump, and others (e.g., JNZ, JZ) are conditional jumps based on status of various flags.

STACK AND I/O INSTRUCTIONS:

 PUSH: Push data onto the stack.

 POP: Pop data from the stack.

 HLT: Halt the microprocessor.

 IN: Input data from an I/O port.

 OUT: Output data to an I/O port.

Mnemonic Opcode Description

PUSH Rp C5 (B), D5 (D), E5 (H), F5

(PSW)

Push the contents of the specified register pair (Rp) onto the

stack

POP Rp C1 (B), D1 (D), E1 (H), F1

(PSW)

Pop the top of the stack and store the value in the specified

register pair (Rp)

HLT 76 Halt the microprocessor

IN port DB Input data from the specified I/O port into the accumulator

OUT port D3 Output data from the accumulator to the specified I/O port

9

In the table:

 "Rp" represents the register pairs: BC (B), DE (D), HL (H), and PSW.

 "port" represents a specific I/O port address.

 The PUSH instruction pushes the contents of a register pair onto the stack, while the POP instruction

pops a value from the stack and stores it in a register pair. The HLT instruction halts the microprocessor,

effectively stopping further execution.

 The IN instruction inputs data from a specified I/O port into the accumulator, and the OUT instruction

outputs data from the accumulator to a specified I/O port.

INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING:

Assembly language programming for the 8085 microprocessor involves writing low-level instructions that the

microprocessor can understand and execute. The 8085 is an 8-bit microprocessor with a relatively simple

instruction set, making it a good platform for learning assembly programming concepts.

Here are some key points to understand about 8085 assembly language programming:

1. Machine Code and Assembly Language :

 Machine code is the binary representation of instructions that the microprocessor executes directly.

It consists of sequences of 1s and 0s.

 Assembly language is a human-readable representation of machine code. It uses mnemonics to

represent instructions and symbolic names for registers and memory locations.

2. Registers and Memory:

 The 8085 microprocessor has a set of registers, including the accumulator (A), general-purpose

registers (B, C, D, E, H, L), and special-purpose registers (e.g., Program Counter, Stack Pointer).

 It can access up to 64KB of memory (addressable by 16-bit addresses).

 Memory locations can hold data and program instructions.

3. Instruction Format:

 Each 8085 instruction consists of an opcode (operation code) and operands (registers, memory

addresses, immediate values).

 Instructions may have zero, one, or two operands.

 The size of operands (8-bit or 16-bit) depends on the specific instruction.

4. Programming Concepts:

 Data transfer instructions move data between registers and memory locations.

 Arithmetic and logical instructions perform operations on data in registers and memory.

 Control transfer instructions alter the program flow, enabling loops, conditional statements, and

subroutines.

 Stack and I/O instructions handle stack operations and input/output operations.

10

5. Assembling and Running:

 Assembly language programs are written in a text editor using mnemonics and symbolic names.

 The assembly program is then assembled into machine code using an assembler.

 The resulting machine code can be loaded onto the 8085 microprocessor using appropriate hardware

or software (e.g., a simulator) to execute the program.

6. Debugging and Optimization:

 Debugging assembly programs can be challenging due to the low-level nature of the code.

 Debuggers and simulators can help in identifying errors and analyzing program behavior.

 Optimization techniques, such as code size reduction and efficient algorithms, are important in

assembly programming.

For Examples: Refer Microprocessor Practical File

Programming Techniques with Additional Instructions in 8085:

1. Subroutine Calls (CALL and RET):

 The CALL instruction is used to call subroutines. It saves the return address (address after the CALL

instruction) on the stack and transfers control to the specified memory address.

 The RET instruction is used to return from a subroutine. It pops the return address from the stack and

transfers control to that address.

 Subroutines allow you to modularize your code and reuse specific functionality.

2. Looping (Conditional Jumps):

 The conditional jump instructions (e.g., JNZ, JZ, JNC, JC) are used to perform conditional jumps

based on the status of flags (e.g., Zero, Carry).

 These instructions are useful for creating loops. You can check a condition using a conditional jump

and keep jumping back to the start of the loop until the condition is satisfied.

3. Counters and Iterations:

 You can use a combination of instructions, such as INR (increment) or DCR (decrement), to create

counters for loops or iterations.

 By incrementing or decrementing a register or memory location within a loop, you can create precise

loops with a specified number of iterations.

4. Stack Usage (PUSH and POP):

 The PUSH instruction is used to push data onto the stack, and the POP instruction is used to pop data

from the stack.

 The stack is often used to save and restore register values in subroutines. It's crucial for maintaining

the program state.

5. I/O Operations: The IN and OUT instructions allow the microprocessor to communicate with input and

output devices. We can use these instructions to interact with external devices. Proper I/O handling is

essential for many real-world applications.

11

6. Flags and Condition Testing: We can use instructions like CMP (compare) to set condition flags without

altering accumulator. These flags are useful for conditional execution & decision-making in our program.

7. Special Function Registers (SFRs): The 8085 has special function registers that can be used for specific

tasks, such as controlling interrupts, enabling or disabling certain features, or managing I/O operations.

8. Immediate Data Manipulation (MVI): The MVI instruction allows you to load immediate data into a

register or memory location. This is useful for setting up initial values or constants.

9. Data Exchange (XCHG): The XCHG instruction is used to exchange the contents of the HL register pair

with the DE register pair. It's useful for data shuffling.

Counters and Time Delays:

Counters:

Counters are used to keep track of events or iterations. In 8085 assembly programming, you can create counters

using registers or memory locations. Here's a basic example of using a register (B or C) as a counter:

; Initialize counter (B or C) to a specific value

MVI B, 0FFh ; Initialize counter B to 255 (hexadecimal FF)

LOOP:

 ; Your loop body here

 ; Decrement the counter

 DCR B ; Decrement the value of counter B

 ; Check if the counter has reached zero

 JNZ LOOP ; Jump back to the LOOP label if counter B is not zero

Time Delays:

Time delays are essential when you need to create specific timing intervals in your program. You can create

time delays by executing a series of instructions that take a known amount of time to execute. For this purpose,

you can use loops and the NOP (No Operation) instruction, which takes one machine cycle to execute. The

number of NOP instructions in the loop determines the delay duration.

; Time delay loop

DELAY:

 NOP ; One NOP instruction (1 machine cycle delay)

 DCR B ; Decrement a counter (using register B as the counter)

 JNZ DELAY ; Jump back to DELAY if the counter (B) is not zero

12

Stack and Subroutines in 8085:

1. Stack:

 The stack is a special region in memory used for temporary data storage. It operates as a "Last-In,

First-Out" (LIFO) data structure, meaning that the most recently pushed item is the first to be popped.

 The 8085 microprocessor uses a dedicated stack pointer register (SP) to keep track of the top of the

stack. The stack grows downward in memory, meaning that as items are pushed onto the stack, the

stack pointer is decremented to point to the new top of the stack.

 PUSH: Pushes the contents of a register pair (e.g., BC, DE, HL) onto the stack. It decrements the

stack pointer twice (for the high byte and low byte) and stores the data in memory.

 POP: Pops the top two bytes of the stack into a register pair. It retrieves the data from memory,

increments the stack pointer twice, and loads the data into the specified registers.

2. Subroutines:

 Subroutines are reusable sections of code that can be called from different parts of a program. They

are particularly useful for modular programming, reducing redundancy, and improving code

maintainability. Subroutines can take parameters (inputs) and return results (outputs).

 CALL: The CALL instruction is used to call a subroutine. It pushes the return address (address of

the instruction after CALL) onto the stack and transfers control to the specified memory address.

 RET: The RET (return) instruction is used within a subroutine to return to the main program. It pops

the return address from the stack and transfers control to that address.

